Package: alqrfe 1.1

alqrfe: Adaptive Lasso Quantile Regression with Fixed Effects

Quantile regression with fixed effects solves longitudinal data, considering the individual intercepts as fixed effects. The parametric set of this type of problem used to be huge. Thus penalized methods such as Lasso are currently applied. Adaptive Lasso presents oracle proprieties, which include Gaussianity and correct model selection. Bayesian information criteria (BIC) estimates the optimal tuning parameter lambda. Plot tools are also available.

Authors:Ian Meneghel Danilevicz [aut, cre], Pascal Bondon [aut], Valderio A. Reisen [aut]

alqrfe_1.1.tar.gz
alqrfe_1.1.zip(r-4.5)alqrfe_1.1.zip(r-4.4)alqrfe_1.1.zip(r-4.3)
alqrfe_1.1.tgz(r-4.4-x86_64)alqrfe_1.1.tgz(r-4.4-arm64)alqrfe_1.1.tgz(r-4.3-x86_64)alqrfe_1.1.tgz(r-4.3-arm64)
alqrfe_1.1.tar.gz(r-4.5-noble)alqrfe_1.1.tar.gz(r-4.4-noble)
alqrfe_1.1.tgz(r-4.4-emscripten)alqrfe_1.1.tgz(r-4.3-emscripten)
alqrfe.pdf |alqrfe.html
alqrfe/json (API)

# Install 'alqrfe' in R:
install.packages('alqrfe', repos = c('https://iandanilevicz.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 290 downloads 23 exports 3 dependencies

Last updated 2 years agofrom:442be00a9b. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-win-x86_64NOTENov 19 2024
R-4.5-linux-x86_64NOTENov 19 2024
R-4.4-win-x86_64NOTENov 19 2024
R-4.4-mac-x86_64NOTENov 19 2024
R-4.4-mac-aarch64NOTENov 19 2024
R-4.3-win-x86_64NOTENov 19 2024
R-4.3-mac-x86_64NOTENov 19 2024
R-4.3-mac-aarch64NOTENov 19 2024

Exports:bic_hatclean_datadf_hatf_denf_tabloss_alqrloss_lqrloss_qrloss_qrfemake_zmqrmqr_alphaoptim_alqroptim_lqroptim_qroptim_qrfeplot_alphaplot_tausprint.ALQRFEq_covqrrho_koenkersgf

Dependencies:MASSRcppRcppArmadillo